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ANALYSIS OF ERROR GROWTH AND STARILITY
FOR THE NUMERICAL INTEGRATION OF THE

EQUATIONS OF CHEMICAL KINETICS

By D.E. Magnus and Harold S. Schechter

ABSTRACT

Several stable numerical methods of integration are developed
for solving ﬁhe equations of chemical kinetics. The only limita-
tion upon the.integration stepsize is imposed by the truncation
error and the residual error introduced by the linearization of
the ordinary differential equations of chemical kinetics. How-
ever, the limitation is not severe and the stable procedures
produce accurate solutions using a stepsize which is large com-
pared to the maximum stable stepsize of standard procedures.

The methods have been applied to the hydrogen-air chemistry
system, and for a given problem the amount of machine time was
reduced by a factor of 10 to 20 as compared to other methods
of integration. Also for dissociating air chemistry, the method
produced accurate solutions with a substantial saving in machine

time. The numerical results for these two chemistry systems

are reported herein.



1. INTRODUCTION

A'chemical‘reaction involving n species can be represented
by n-coupled non-linear ordinary differential equations (ODE). 1In
the simplest form the independent variable can be taken as time,
and given the appropriate n initial conditions at some time, to'
the mathematical model is properly posed for integration. A
variety of standard numeriqal procedures éan be used to integrate
these equations, but unfortunately these procedures (Runge-Kutta,
predictor-corrector, etc.) exhibit unstable behavior for stepsizes

).

which are vefy small compared to the domain of integration, (to'tf
Consequently, large amounts of machine time may be required to
integrate the equations over reasonable domains.

In classical investigations of téchniques for integrating
ordinary differential equations, the problem of instability is
discussed from the viewpoint of the solution behavior as the;step—
size, h, approaches zero. The solution of the finite difference
equations at h=0, should not have extraneous solutions which»will
dominate the desired results; multistep procedures satisfying this
requirement are termed strongly stable. However, the unstable
behavior of the equations of chemical kinetics is of a different
type involving the solution behavior as the stepsize is increased.
Since the trﬁncation error will tend to increase in some well-
behaved manner as stepsize increases, the numerical solution should

“smoothly" depart from the exact solution as the stepsize is increased.

When integrating the chemical kinetic equations by standard numerical
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methods, the smooth departure exists only to some maximum stable
stepsize hs which is inversely proportional to the Lipschitz
constant of the system. Above this value of stepsize, the
numericél solution departs radically from the true solution.
Numerical techniques exhibiting such behavior are termed partially
unstable in this report. Althoﬁéh the standard single and multi-
step integration methods.(suéh as FEuler, Adams-Moulton, Runge-
Kutta, etc.) are well-suited to a variety‘of problem areas, tﬁe
methods are partially unstable and not practical for integrating
ODE with large Lipschitz constants as found in the equations of
chemical kinetics. (Other problems from physics have the same
characteristics; for example, control system problems have a similar
behavior as indicated in the introduction of Ref. 1.)

In this report, a class of numerical procedures which are
stable are described and investigated for their error behavior.
In Section 3, the deriﬁaticn of these numerical procedures is des-
cribed from several points of view. The numerical integration
formulas, which are termed as rational approximation methods, are
initially derived using "trial family techniques" wherein thé func-
tions are polynomials. The methods are theninterpreted using
analogies with more familar integration approximations, and lastly
this whole class of integrators is developed from the viewpoint of
rational approximation of the exponential function. This latter

. . . / .
approach is conveniently described in terms of the Pade series and



represents the "best" unconditionally stable procedures.

The procedures under discussion are directly applicable to
a systeﬁ.of linear ordinary differential equations, which of
course have an exponential form of solution. 1In Section 4, the
truncation and propégated errors associated with several>rational
_approximation ﬁethods are describéd and compared for sucﬁ linear
differential equations. bThe.same integration methods may be
applied to systems of non-linear differential equations for chemical
kinetics by introducing an additional operation; namely, the non-
linear differential equations are linearized by a straightforward
application of Taylor's Series for n variables. By linearizing the
equations two additional problems arise:

(1) Since ﬁhe Taylor's Series is truncated after the second
term, a residual error is introduced and its effect uponvthe numer-—
ical solution must be included in any numerical analysis study and
interpretation of results.

(2) The linear form of the equations must be recomputed at
each step of the numerical calculation.

In Section 4, the résidual error has been included in the
‘propagated error expression, and to illustrate the importance of
residual error upon practical problems the results from two differ-
ent chemistry systems are reported in Section 6. First, the error

behavior results from a detailed study of the hydrogen oxygen com-




bustion process are given. Then the chemical reactions in a
dissociating air system behind a bow shock are reported upon.
For the sake of simplicity, the only charged particles in the
air system are N0+ and e . The effect of stepsize on the propa-
gated error is.illustrated, and numerical comparisons are made
‘with results from the Runge-Kutta procedure.

The rational épproximation method is not limited in step-
size because of stability fequirements and large steps are possible
without introducing exceséive error. However, because the pro-
cedure requires the recomputation of the linear form at each step,
the evaluation of thé procedure against standard methods must in-
clude more than just considerations of stepsize. The evaluation
must be made with respect to over-all time on the computer for a
given problem. Such results can be obtained by making a detailed
count of operatiohs or actually running and timing problems on a
computer. The latter approach has been used in the study, and for
the two chemistry systems reported in Section 6, the rational
approximation method requires significantly less computer time
than standard methods. These timing studies have been performed
without any particular attention given to optimizing the codes

or logic.



2. STATEMENT OF THE WORK

Problems in chemical kinetics give rise to differential
equations of the form:
v!

po= Y W —v ) k@et oy T im12 2.1)
yl —Zl l] l] j p &q py,{; 1=l,4,...0n ( .
J= =

"where n is the number of reacting species, m is the total number

of reactions (the sum of forward and reverse reactions), Yy is the

number of moles per unit mass of the mixture, and the dot denotes

differentiation with respect to time. T and p are the temperature

and density, respectively. The stoichiometric coefficients U'i. and
, . ‘ . . .th .

V'ij are defined by the following expression for the j chemical

reaction equation:
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where Ri and P.l are the reactants and products, respectively. The
. .th . . . ) ‘

reaction rate for the j reaction 1s kj which 1s taken as a func-

tion of temperature only and has the form

b

_ J -
kj(T) = aj T exp | ej/T)

where aj, bj' and ej are constants.

These equations define a system of n first order different-

ial equations which can be expressed in general form as




yt) = £(t,y) :  ylt)) = Y, (2.2)
where y'is a vector valued function of t, (yi(t)) and f is a
vector valued function of t and vy, (fi(t'yl' oo yn)). Given the
initial vector Yo the system of ODE is to be integrated over the
time domain  (t0,tf). To compléte the specification of‘the
problem, relationships are required for the computation of depsity
and temperature. These relationships are fhe equation of state and
a definition of enthalpy as a function of temperature.

Many methods have been devised for obtaining a numerical
solution of (2.2). However, most of these methods will not give a
valid solutiéﬁ if the stepsize h becomes too large. Although the
truncation error increases in a smooth manner as h increases, the
numerical solution becomes unstable when h exceeds a cerﬁain
critical value. Even if the truncation or round-off errors are
small, the propagated error becomes unbounded because the ampli-
fication term in the error expressionhas a spectral radius greater than one.

The‘unstable behavior can be illustrated and understood by

considering the error behavior of the Euler method. Let

= + ¥ .
Vel = Y P (2.3)
where fk = f(tk, yk), h is the stepsize between tk+l and tk' and
t. = kh. The stepsize, h, can be assumed a constant for this

k

discussion. The true solution can be expressed as



=y, + hf + 7 (2.4)

Yy K+1

where T is the truncation error. By subtracting (2.3) from (2.4),

kt+l
applying the mean value theorem, and letting e T Yy~ §k' the

error expression becomes
e, - = ‘I + h éf e, + T (2.,5)

of

d .

where Sf is the matrix [3§£] . The operator on the error term e
3

is the amplification matrix which determines the.stability behavior

k

of the system of equations. Dropping the truncation error and assuming
df . . .
that S; is a constant (e.g. the vector f is a linear function of y),

an initial error vector eo produces the following error vector after

k+1 steps:

e = (I+h"§ e © (2.6)

If the eigenvalues of'§§ have positive real parts, the solu-
tion would be increasing and the error might also be expected to
increase. However, if the eigenvalues all have negative real parts
and én error increases from one step to the next, the numerical
solution will then-be parﬁially unstable. A more complete discussion

of stability will be found in Section 3, but the above description

is adequate for our example.




If the error generated by Euler's method is not to increase,
the eigenvalues of the amplification matrix I + h %f must be less
than one in absolute value. Otherwise, as the matrix is raised
to highér powers, the norm of the error vector will continually
grow.LetﬂEAUjlcomplex eigenvalue of %5 be

where Oi> 0. Then by imposing the stability requirement, a

sufficient condition for stability is

h < 2/&

where & = maxp{)LI
3 1

1f & is large, as in the chemical kinetic case, this require-
ment may result in a small h and a large amount of computing time
if the domain of integration is large. The above behavior for the
Euler method is characteristic of most standard single and multi-
step methods. Extending the analysis to the more complicated
methods does not present any difficulty other than cumbersome
algebra and has been reported in Ref. 3. For the purpose of later
discussion, the stability criteria.for the fourth order Runge Kutta

method 1is

h < 2.8/|)]




where A is a real eigenvalue of the system.

In attempting to find a method for which the stepsize is not
so depéndent upon the magnitude of the eigenvalues of the system of
equationsbeing solved, an.iterative method might be considered.

If the solution is iterated a number of times for each step, the
_error might not continually grow.even though the stepsizé is large.
Unfortunately, if the eigenvalues of the system are large, a small
stepsize is necessary if the iterative method is to converge.

This can be illustrated by>the following method based on the trape-

zoidal rule for integration

i+l _ h

Y1 T Yy k k+1

where i1 is the index counter for the iterations. The difference

;+l . . . . . .
dl between the result at iteration (i+l1l) and (i) is (the index

k is dropped for simplicity)

g+l _ i+l

i hyof
B 2\dy

~N
Ll
Q

. . of o 3
Again the matrix S; was assumed constant. The matrix h Sf must be
convergent; that is, its eigenvalues AL must have a modulus less

than one. Hence, the stepsize must satisfy

h < 2/&



~

Again if A is large, the stepsize is restricted to a very
small value.

The equations describing the chemical reaction for the com-
bustion of hydrogen in air can be used to illustrate the restric-
tion on stepsize. In a typical case the solution might be desired
.over a time domain of .0l seconds. However, the magnitude of the
largest eigenvalue éf the system will be about 106, and the Euler
method would reguire a stepéize h <2 x 10_6 (seconds) to remain
stable. Hence 5000 steps would be needed to complete the problem.
Similarily the iteration methodeéuld require a great number of
steps. These small steps are required even though iittle change
might occur in the solution from one step to the next.

Other methods which are not stepsize limited because of
stability must be considered. In the next section, several such

methods will be discussed.
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3. DEVELOPMENT OF STABLE INTEGRATION METHOD

In order to study the'stability of a numerical method of
solution for the system of ordinary differential equations (2.2),
the nature of the sQlution must be discussed. If a component of
the analytical solution is growing, the numerical error could
"also be expectea to grow. This type of error growth which is
due to the nature of the equations is not regarded as an instabil-
ity of the numerical method. However, if an error, once intro-
duced, continues to grow even though the transient part of the
solution decays, the numerical method will not be stable. A decay-
ing solution can be characterized by the fact that the eigenvalues
of the matrix 3f/dy whose general element is afi/ayj will have
negative real parts. These considérations lead to the following
definition of numerical stability used in this report.

A numerical method.of solution for ODE of £he form (2.2) is
stable if an error, once introduced, decreases from step to étep
when the eigenvalues of 3f/dy have negative real parts.

As was shown in Section 2, many methods become unstable if
the stepsize is too large. Methods will be developed in this
section thch are stable for any stepsize. The only restriction
on the stepsize Qill be aue to the error introduced by the nature

of numerical approximations. This error, which is inherent in any

12



numerical method involving truncation and round-off, may accumulate
but not grow in an unbounded manner. While these methods are
developed for linear differential equations, it will be shown
that they can also be applied to a general system of nonlinear
equations which include the equations of chemical kinetics as a
' special case.
The method of derivation might best be understood by first con-

sidering a single ODE of the form
¥y = ay + b.

Assume as a "trial family" solution a simple linear function of

t; that is,

y = ?o + ct.

Now impose that the linear solution satisfies the differential

equation at t=h. Hence,
c - a (yo + ch) - b = 0.
It then follows that

c = (ayo + b)/(1l-ah) .

The solution would then be

y(h) = yo + (l—ah)-l (ayO + b)h .

13



Alternatively, it could be required that
. h
fh (y’ - ay - b)dt = r (¢ = ay_ - act - b) dt=0 .
. . o
0] 0
In this case the integral of the error in the approximation is made

zero over the interval (0,h) and

c = (ay_ + B)/(I - % ah)

and

. X 1 -
= + - = ‘ + .
y(h) =y + (1- 3 ah) (ay_ + b)h
These ideas will now be generalized to a system of equations and
a polynomial of any order in t. Consider a system of N linear ODE

with constant coefficients

¥y (t) = Ay(t) + b \ (3.1)

with initial conditions

I
<

y(to)

In order to solve these equations, assume a solution of the form

- ) m i
v(t) = y_o + y cit (3.2)
i=1

where the c, are to be determined in such a manner that ;(t) satis~-

fies equation (3.1) in the interval (o0,h) with the error e(t).

14




Substituting (3.2) into (3.1) leads to the equation

m . .
~1
e(t) = ): ici et - Ay - Ac. (3.3)
i=1

M =
H
t
P
]
o

1

The coefficients c, can be determined by weighing the error e(t)
by several different methods. The method of collocation would
require that the error vanish at specified points in the interval
whereas a subdomain technique requires the integrated error to be
zero over various subintervals. Expressed in equation form,

these two methods impose

collocation: e(tj) = e(ih =0 for j=1,2,...m (3.4)
subdomain: JFH e(t) dt = 0 for j=1,2,...m (3.5)
t.
j~-1

Although other techniques such as Galerkin or least sguares,
which impose still different conditions on the error, are useful
in various types of problems, these methods do not seem to offer
any advantage toward the development of stable integration pfocedures.
As will be shown subsequently, the class of stable methods can be
represented in a general form and‘consideration of the Galerkin or
least squares method is not necessary nor desirable from the view-
point-of truncation error.

For the collocation method, the following equations for the
c, are obtaiped from (3.4) and (3.3):

i-1 |
(l}—‘) ir - A a
m m

s

c, = Ayo + b j=1,2,...m

i=1
(3.6)

Similarily for the subdomain method using (3.5) and (3.3), we obtain

15



Using either (3.6) or (3.7), a set of coefficients ¢, can be com-
puted and upon introducing these coefficients into equation (3.2),
" the desired integration formulas can be obtained. The details of
the algebraic operations appear in Appendix A for m = 1 and 2, and

only the final integration formulas are tabulated below:

Collocation Method

y(h) = v, * h(:['—hA)_l (ay + D)
o (3.8)
-1
= (I-ha) (y, + hb)
for m = 1
y(h) = y_+ h(1—3/4‘hA + 1/4 n° Az)"l (I-1/4 ha) (Ay _+ D)

(1—3/4 bA + 1/4 n? A2)—l [(1 + 1/4 ha)y_+ (I-1/4 ha) hb]

(3.9)
for m = 2
Subdomain Methpd
' -1
y(h) = Yo + h(I - 1/2 ha) (Ay_ + b)
(3.10)
-1
= (1 -12mn)7" [(x+1/2 na)y_ + hb|
for m = 1

16




-1

y (h) Yo+ h[I— 1/2 hA + 1/12 (hA)ZJ (Ayo + b)

-1
(1- 1/2 na + 1/12 (ha)?] [(z+ 1/2 na + 1/12(na) %)y + o)

for m = 2 (3.11)

High order integration procedures (m > 2) can be obtained in
a similar manner. vHowever, from the viewpoint of application to
the problems of chemical kinetics, these higher order schemes are
not of great interest. As will be illustrated in Section 4, the
residual error introduced by linearizing the ODE‘negates any
advantage derivediioﬁ the small truncation error achieved with
higher order methods.

Having once derived formulas (3.8) through (3.11), several
other interpretations may be given. For example, the formulas
can be developed for integrafing y' between the points t = to and

t = to*'h in the following manner. If the lowest order implicit

integration formula is applied to the system of equations (3.1)
y(h) =y +h ¥ (h) =y +h (Ay (h) + D)
and upon transposing
kI—hA) y(h) = yo+.hb
or

y(h) = (1-hA) " (y_+hb)
L7



The above equation is the previously derived equation (3.8).

When y 1is integrated using the trapezoidal rule

y(h) =y + 1/2 h (yo + y(h)) = v, + 1/2 h (Ayo+ b + Ay(h) + b)
Transposing and solving
y(h) = (1-1/2 1)1 [(1+ 1/2 nha) y, + hbl

The above equation corresponds to equation (3.10) for the sub-
domain method with m=1.

The second order equation (3.9) for collocation is obtained
when more weight is given to the right end point.‘ By introducing

the second derivative into the integration formula

v, + 1/4,h (90 + 3y(h)) —.1/8 h2§:(h)

i

y (h)

0

y  + 1/4h (Ay +b + 3ay(h) + 3b) - 1/8h°a(ay (h) + D)

Then rearranging

y(h) = (I - 3/4hA + 1/4 (hA)z)—l((I + l/4hA)yO+ (I-1/4 ha) hb)

Finally a formula can be obtained which utilizes the interpolating
polynomial in terms of y and ¥ at both end points of the
step, and

18




y() = y_+1/2h(y _+ #(h) - /12 0% (5 (n) - F )

y_ + 1/2 n(dy_ + b + Ay(h) + b) = 1/12 na(ay(h) + b - Ay_ - b)

Rearranging the terms,
y2,-1 2
y(h) = (I- 1/2 hA + 1/12(ha)") "I(I + 1/2 ha + 1/12(hA)7)y_ + hb]

Thus the integration procedure (3.11) derived from the subdom;in
method with m=2 is obtained. |

Hence all of the integration procedures obtained from the poly-
nomial trial family approach have interpretations in terms of other
integration férmulaS'after suitable algebraic manipulation. This
manipulation of the integration, formulas is possible because the
system of equatiors is linear and suggests the possibility of a general
approach. to the derivation of integrators using known prbperties of

linear ODE. The formal solution of eduation (3.1) at t=h is

y(h) =y + [exp (hA)-I) at (ay_ + b) (3.12)

where

exp (hA)= I + hA + 1/2 (hA)Z 4 ...... i

Equation (3.12) is similar in form to the numerical integration
formulas (3.8) through (3.11). The equations become identical if
the exponential term in (3.12) is replaced by the correspond-

ing rational approximations in the integration formulas.



Further study indicatesAthat with the exception of (3.9), the
rational approximationsare identical with those obtained from the"
pade table for the exponential function. Each of the entries in
the table are polynominals Pand Q of degree p and g, respectively,

such that

R Q-l P + E(ha)

that is, the rational approximation agrees with the power series
of exp (hA) for at least p + g + 1 terms. The residual error is
denoted by E(hA). The polynomials in the Pade Table for the ex-

ponential function (Ref.4) are given by

P .

- (ptg-k): p: k
P = k§0 (o+q) k! (p-k): (PA)
Q E (p+q_k) :q: ("hA)k

Lo (ora) ikt (g

By evaluating these formulas for the following three cases:

(1) p=0, g=1, (2) p=g=1, and (3) p=g=2, and applying the results
to equation (3.12), the integration equations(3.8), (3.10) and
(3.11) are obtaihed, respectively. Equation (3.9) cannot be
derived from the Pade'tabie, but iﬁ the next section it will

be shown that the corresponding Pade’ table entry for p=1 and g=2

is similar and has a smaller truncation than (3.9).

20




By using the Padé’table, the different integration formulas
can be derived in a unified manner, and very littlé effort is needed
to develop formulas of aﬁy order. The truncation error of these
formulas may also be obtained directly from the Pade’theory.
. Because of thé éeneral nature of such Pade’approximation, inte-
gration formulas which arise from them shall be called Pade’inte—
gration formulas. |

These methods must now be examined from the viewpoint of

stability. All of the methods discussed are of the form

- -1 -1
y(h) = Q P yO + Q  Rb

where R represents some polynominal in (hA). l\pplyingrthe method
in a step by step manner yields
y =qote + 0 ~ Rb (3.13)
Yk+1 Yx :
where Yy = y(kh). The true solution y can also be expressed as

+ Q Rb k+1

1
=Q Py (3.14)

Y1

where Tk+l is the truncation error. Denote the error at each step

by

and subtract (3.13) from (3.14) to obtain

21



o
ee1 = (@ B T (3.15)

In order to see how an error from any source propagates, we
may negiect the truncation error term and assume that a single
error e is committed at one step, say the first step. Equétion
(315) then becomes

- 12 R
e =0 tre =@ e _-...=@k e

(3.16)
After k steps an initial error e, will grow or decay depending upon
the amplification matrix (Q—lP).
From the definition of stability, when the eigenvalues of the
matrix A have negative real parts, ek must decrease as k increases.
k

. . - . . -1
Since e, 1s a constant, e, can decrease only if the matrix (Q "P)

k
. . . ' -1
is convergent; that is, the eigenvalues of (Q "P) must be less
than one in absolute value. For every eigenvalue Ai of the

. . . . . -1
matrix A in (3.1), there is a corresponding eigenvalue for Q “P.

For convenience, the stability criteria is stated in terms of A

by using

<1

P(X)/Q(})

Thus the stability requirement becomes

22




e 0] <ahy| (3.17)

where the complex eigenvalue A = h\ = - a + if (a > 0). In

the following table, the complex eigenvalue polynominals for

P()) and Q(X) are given for each integration procedure.

Table of Complex Eigenvalue Polynominals

Equation No. P()) AjS)
3.8 1 (1+a) - iB
| 1 1. 3 1 ,2.2
3.9 (1- 2 o) + 2 iB 1+ 3 o+ yy (o-87)
a3, 1
-iB (4 3 o)
1 1. ’ 1 1 .
3.10 (l—2a)+ 21/3 (l+za)—2lf3
1 1 2 2 2l 1 1 1,2 2
3.11 1-2a+.12(a—3)+13(2 6a) 1+2a+12(a B)

pd L 1
—13(2 T a)

The tabulated values of P(A) and Q()) satisfy the stability criteria
(3.17), and, consequently, all of the integration procedures are
stable within our definition. Since the stepsize, h, does not ex-
plicitly enter iﬂto the above analysis, our conclusions are for all

values of h. -
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4. -ERROR BEHAVIOR OF THE
RATIONAL APPROXIMATION METHODS

Once a numerical methqd for solving a problem has been developed,
it must be examined to establish how well it approximates the actual
solution to the problem. If the error cannot be kept within reason-
able bounds, the method will not be of any practical value. For a

known initial efror, the investigation of stability (Section 3)
indicates the behavior of the error growth or decay as the integra-
tion continues from step to step. In this section, the methods of
integration Qill be examined from the viewpoint of the types of
errors introdgced at each step by the numerical approximations.
These errors are caused by the truncation in our integration
formulas, the residual error introduced by linearizing the equations
at each step and round-off. The former two sources of error will
be discussed, but the latter type of error will not be considered
in this report. l

The step by step truncation error of any of the formulaé
(3.8) through (3.11) may be evaluated with the help of Taylor's
formula. Thesohmimlof(3.l) may be written as

1 n+l (n+1)

. 1 -
y(h) = Y + hy (o) + 5:_h2 y (o) + ... + (nel) ! h 1% (n)
. ' . 1 1 .
=y + hy (o) +-%: h2 Ay (o) + ... ?EIIT: nEL A y (n)
(o =mn <h) (4.1)
(mhe) = a™h 5 (o).

since (3.1) may be differentiated to yield y

24



Each of the integration formulas (3.8) through (3.11l) can be
expanded and compared with (4.1) to obtain the truncation error

T. For example, equation (3.8) can be expanded as
- ! -1 .2 .
y(h) = Y + hyo + (I-ha) h™ AV (o) (4.2)

Subtracting (4.2) from (4.1).defines the truncation errorx

v o= AT [ 2 Iy (n) - (o) ] (4.3)

If (hA) is a convergent matrix, then

2
T = - b—zé vy (g = ’O(th) ' (4.4)

Similar expressions for truncation error can be derived for all

of the rational approximations and are tabulated below:

TABLE.I - TRUNCATION ERRORS

Formula No. ' Behavior
: 211 .. -1, 2
(3.8) h°a [3 ¥ (m-(1-ha) ch] 0(h™A)
3271 .. 1, 3 1.22.-1
(3.9) h™a [6 y (m-3 (I- 3 ha + 5 h'A%) 0(n’a%)
(I—hA)yc‘>]



TABLE I - TRUNCATION ERRORS (CONT)

Formula No. Behavior

» 3271 ., 1 1 -1 .. 3.2

(3.10) hoa% |2 ¥ (m=- 7 (I- 5 bA) yo] 0(h"a”)
54 [ 1 .. 1 1 1 .22-1

(3.11) h'A [120 vy (n) EZZ (1 5 hA + 3 h“A%) 0(h5A4)

The truncation error can also be derived using the theory of
Pade'approxiﬁations. The Pade’ rational approximations, which have
a numerator and a denominator that are polynominals of degree p and
q. resbectively, agree with the Taylor's series expansion of the
function for at least p + g + 1 terms. In this sense, it is the
"best" approximation. As mentioned in Section 3, formula (3.;0)
corresponds to p = q = 1, and then from the remainder term in
Taylor's formula the tfuncation term must be O(h3) which is the
value given in the above table. Similar results can be established
for formulas (3.8) and (3.11) for the cases of p = 0, g = 1, and
p = q = 2, respectively. Now consider the equivalent Pade” approxi-

mation for (3.9) which requires p = 1 and q = 2. For these values,

the approximation to the exponential is

hA -1

e £ Q P = {I -2

L2t et
3 ha + 6 (hA) I+3 hA]

and the corresponding truncation error is O(h4). However, from the
table for (3.9), 7= 0(h3) indicating a less accurate integration
formula.
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The truncation errof in Table I can be used in the usual manner;
namely, the behavior of the error for various stepsizes can be
predicted and for sufficiently small values of h the accuracy of
various methods compared. For example, the error for (3.11) is
comparable to the fourth order Runge-Kutta method.

Now consider the nonlinear system of ODE (2.2), which are

rewritten here

yo= f(t,y) y(to) = Y, - (2.2)

The system is reduced to the form of (3.1) by expanding the function

f in a Taylor's Series and neglecting high order terms:

' df :
¥ o= £ty )t aolt .y,) by + 0(AY) (4.5)

A 3f .
where Ay = Y-y, andﬁ&;(to,yo) denotes the matrix A in (3.1) with

elements

Lo . . .th . .
The indices i and j denote the i and jth elements in the

f and y vectors, respectively. Hence grouping terms as in (3.1)

.. Of of 2
Y= 3y (v dy + (£(t L,y ) >y (try )y ) + 0(8y7)

= Ay + b + 0(4 y2)
Since the equation must he linearized at each step of the inte-

gration, the residual error, which is denoted by £k+l=O(Ay2) 97
v



h . : .
for the kt step, must be introduced in eguation (3.15),

-1 -1
e, = (@ Ple, + Q'R

+ .
Lk+l rk+1 (4.6)

Again, assuming the matrix A and the vector b are nearly constant
over (k+1l) steps then
' k+1
-1 ,k+1

-1 .-
ey = @) e+ Z e

v 1

@R L, + )] (4.7)
Equation (4.7) which is similar to (3.16) includes the influence

of the truncation error and the residual error of linearization.
Again, the amplificafion matrix Q_lP must be a convergent matrix
for a stable systam. The rate of decay of (Q—lP)k and the magni-
tude of the error Q_l R Lk + Tk introduced at each step will
determine whether ek+l is decreasing with k. Since the linear-
ization and the truncation errors appear together, the integration
method for a particular type of problem should be selected to achieve
a truncation error approximately the same size as the linearization
‘rror. Hence, if a large residual error is present, a low order

‘ntegration formula should be used.
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5. IMPLEMENTATION ON A DIGITAL COMPUTER

The Pade/approximations for integration have been used to
solve two sets of differential equations of £he form (2.;)
arising from two different chemistry systems. The reaction
equations and resulting differential equations for these systems
- will be found in Appendix B. Alfhough the equations of the
systems are similar in form their solutions have different char-
acteristics. Chemistry systems which are significantly differ-
ent in behavior have been chosen to demonstrate the suitability
of the integration procedures under consideration. One system
represents hydrogen burning in air. 1Initially, the species that
were zero become larger while the temperature remains almost con-
stant. Then ignition occurs and the temperature and species
change rapidly over a short interval. Finally the process slows
down as equilibrium is approached. Tﬁe second chemistry system is

. . . . . - . . AT
for dissociating air with the charged species restricted to NO and

e . The initial conditions are taken directly behind a bow shock,
assuming the species are frozen across the shock. The species
that were initially zero almost immediately assume large values,
while the temperature rapidly decreases. The digital computer
programs for these two chemistry systems use similar integration

procedures but vary in programming‘details as will be described

below.
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In order to use the Pade integration method, eq. (2.1) must
be linearized. This equation can be written in the general form
y = £f(y,T,0), and when expanded through first order terms, the

linearized equation becomes

g = f(yo,To',po) + (af/ay)o Ay + (Bf/aT)o AT + (af/ap)b Lp
| (5.1)

where y, £, 3f/3T and 3f/dp are vectors, éf/ay ié a matrix ana<
( )o implies. the function is evaluated at the beginning of the
step. The form of 3f/dy for the two chemistry systems under con-
sideration wiil be fqund in Appendix B.

To‘clearly understand.the results of the lipearization, a
typical term will be examined. Such a term might have the form

’

Now expanding Rj through second order terms,
R. z:(kj(T)p Y ¥g) * (kj(T)p ys)O Ay + (kj(T)p Y ), Ay

X o
+ (’5—]{,1‘;(T)p Yyl + AT+ (k(Tyy) Bp+ (2k(T)p) by, Ly,

3k 3k v
+ (2gE(T)p ys)e,AT Ay£-+ (%;5 (T)pyr)O AT Ays + (2kj(T)ys)° bAp Ly,

2

L K 2%k |
+ (2kj(T)yr)o Ap Ayg + ‘%;E(T)Yrys)o Ap LT + (aTZ (T)Dyrys)o ATZ

(5.2)
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There are linear terms in AT and Lp in addition to the linear
term in Axi. Unfortunately, the temperature and density are not
derived from differential equations and hence cannot appear explicitly
in the integration scheme. The temperature is obtained by using
polynomial fits of enthalpy tables and the equation of state is used
. for the density. In the hydrogen case, the enthalpy for each species
is a linear functioﬁ of temperature over the entire region of interest.
For the air chemistry, the enthalpy is approximated by gquadratic
fits over three discrete temperature intervals which cover the region
from O to 6OOOOK. The_coefficientsand other details of the fits are
listed in Appendix B.

The significant changes in the temperature and density for
the hydrogen-air reaction are confined to a small portion of the
dqmain of integration (to,tf). With respect to an integration
step, the change in these parameters is relatively small, and con-
sequently, the linear terms involving 4p and AT are neglected
along with all higher order terms. Then the simplified linear

approximation becomes:
Ry ~ (kj(T)"YrYs)o + (kj(T);oysg,Ayr + (kj(T)"Yr)o Ly (5.3)

These simplifications are not possible for the air chemistry
systemn, because of the large change in temperature (e.g. lOOOOK)

which can occur over an integration step. The production terms



for air are similar to (5.3) but with the term (kj(T)pyryo)O AT
which is added to the constant term in the digital computer.pro—
gram. Initially, AT is unknown and the program has been designed
to iteréte until the solution converges on the correct value.

The density term involving Ap has been dropped in the linearized
form for the air chemistry sincé'its numerical magnitude was
negligible compared to obher'terms. However, with additional
effort, the term could be included by considering the density‘a_
function of temperature as.expressed by the equation of state and
combining with the other terms in the linearized equation.

For the hydrogen—air chemistry system, the integration method
(3.11) has been used in the digital computer program. For simplic-
ity in the logic of the program, the stepsize is held constant
over the domain of integration. A brief summary of the operations
and their order of execution in the program are given below:

1. The inpﬁts fbr a problem are read-in and the program

is initialized.

2. The temperature is computed using the definition of
enthalpy, i.e. h =Zo, hi(T) where o, aetle mass frac-
tions and hi are the enthalpy fits of the species on
page 46..

3. The density is computed from the equation of state

P = rrey,
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4. The linearized form of the differential equations is
computed i.e., the A matrix and b vector of equation
(3.1) are formed. The eguations for the elements aij

of A appear on page 49..
5. Using (3.11) as an integfation procedure, the species
at step (k+1) are computed.
6. Time is incremented by the stepsize h.
7. Steps 2 through 6 are repeated until the entire
domain (to,tf).is covered.
In the air chemistry system the residual error due to linear-
ization is larger than in the hydrogen air system. Consequently,
a low orderxr integration procedure is adequate from the viewpoint
of consistency between the residual and truncation errors. For
this reason, the digital computer program has been designed around
integration procedure (3.10). For simplicity the original program
assumed a constant stepsize. However, the behavior of the solution
immediately indicated that a variable stepsize would be veryvadvan—
tageous, and the logic for a variable stepsize has been introduced.

(In Section 6, results from both programs are given). The sequence

of steps in this digital computer program is as follows:

1. The inputs for a probiem are read-in and the program
is iniﬁialized.

2. The temperature‘is compuﬁed franthe definition of en-
thalpy using a Newton Raphson iteration procedure. The

enthalpy fits appear on page 52 .
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3. The change in temperature AT is calculated for use with
the linearized equations.

4, If after the first integration step, the temperature
change does not agree with the predicted AT, a regula-
falsi iteration method is started and steps 3‘through
8 are repeated until the sequence Am(l), AT(Z)——-—
converges.

5. If AT is larger than a maximum ihput Qaiue AT max,tﬁe
stepsize h is halved and the integration repeated with
the new stépsize. If 2AT < A?hax, the stepsize h is
doubled.

6. The density is computed from the equation of state.

7. The linearized form of the differential equation is
computed; the contribution from the AT temperature
term is included in the b vector of equation (3.1).

The A matrix is defined by the equations on page 55.

8. Using (3.10) as an integration procedure, the species at
step (k+1) are computed.

S. Time is incremented by the current stepsize.

10. Steps 2 through 9 are repeated until the domain

(to,tf) is covered.

Regarding the method of programming any of the integrétion
procedures (3.8) through (3.11), the inversion of a matrix is
not required. Rather the solution for Yis1 is obtained by solv-
ing a system of linear simultaneous equation. The coefficient

matrix is shown inverted in equation (3.8) through (3.11).
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6. DISCUSSIONS OF NUMERICAL RESULTS

The two chemistry models which have been studied are conven-
iently compared by the temperature curves shown in Figure 1. The
lower teﬁperature curve is for a hydrogen combustion reaction. In
the initial region, temperature is almost constant, but as will be
subsequently shown in Figures 3.through 5 some of the species are
rapidly changing. At about .5 x 10_3 seconds, the temperature
begins increasing in the ignition region. In the final regioﬁ which
is not included on the graph, the temperature changes slowly with
time as the mixture approaches equilibrium. The reaction was
studied over a time domain of approximately .l second and during
this period the temperature changed about 1000°K.

The'upper curve in Figure 1 is for the air chemistry system
described in Appendix B. The problems investigated are typical of
the phenomenon directly behind the bow shock of a re-entry vehicle.
The free stream concenfrations of species, which are assumed frozen
across the shock, are the initial conditions for the chemical reac-
tion system. The temperature immediately begins a rapid change
from its initial value at 23,OOOOK, and in about 5 x lO—_5 seconds,
the temperature is reduced to SOOOOK. During the remaining portion
of the reaction, the temperature changes slowly as the mixture
approaches equilibrium at about 74OOOK.

From thé numerical analysis results in Section 4, an interest-

ing observation can be made about the numerical behavior of these

two chemistry systems. Because the hydrogen system undergoes rela-

tively small temperature changes with time, the residual error
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from linearization will not be as large as in the case of the air
chemistry. Hence, the stepsize for the hydrogen system should be
substantially larger than the stepsize of the air system. 1In

. . . -5
fact, the hydrogen system required a stepsize which was 5 x 10

7

and the largest stepsize for the air system was only 5 x 10
In Figure 2, the solid curve represents temperature as a
 function of time computed from the Runge-Kutta scheme for

hydrogen chemistry with the following initial conditions:

T = 1100°K
P = .135 atm (constant throughout the run)
Q = .1277 x 10° a = .2106 x 10°°
H - o -
- ' _ 0.0
aﬁ'@ = 0.0 abH B
2
%y = -2291069 o = -014319
2 H -
2
oh = ,756574 (a constant)

where & is the mass fraction. The stable stepsize, hs, according
to Section 2 is approximately 2.5 x 10—6 seconds. For the pﬁrpose
of the actual calculation, a stepsize of 2 x 10_6 has been used
over the entire domain of integration. The same calculation has
been repeated using the rational approximation method (3.11) for
several différent stepsizes. Some of the temperature results are
shown for h = 25 hs and 50 hsv in Figure 2. The large stepsize

produces a maximum error of approximately 4 per cent which is
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a satisfactory agreement.for this type of problem. For h =50 hs,
the entire error curve of temperature is also shown in Figure 2.
The error is a maximum in the region where the temperature deriva-
tive is.large, as would be expected from the error propagation ex-
pression.

The species calculations for the same problem are found in
Figure 3, 4 and 5 for ah) th and - respectively. From these
figures, it is evident that the rational approximation method pro-
duced good agreement with fhe Runge-Kutta method for h = 25 hs. If
h = 50 hs, somewhat larger errors are produced, but depending
upon the applicationveven these results are satisfactory if some
of the détail in the ignition region is not required. Regarding
the use of very large stepsizes, the reason for the restriction
h = 50 hs is evident in Figure 4. If a stepsize of lOO’hS is
used, only two points would be available to define the step func-
tion behavior in the species aﬁz. The truncation error upon
leaving this region would be very large (;y‘j is large) and this
error would propagate throughout the solution. Furthermore,
because the errors are reduced by (Q—lP), fewer steps impliés the
rate of decay would be reduced. These trends are even evident for
the run where h = 50 hs. At t = 6 x lO-_4 the result is much lower
than the actual solution. Yet the numerical method successfully
corrects this error at the next step indicating a stable behavior.

The comparison of the machine time required to integrate the
equations over the interval (0,.05) is indicated in the following

table:



TABLE II - COMPARISON OF MACHINE TIME

(Running Time of Method)
Method Number of Steps (Time of Runge-Kutta Method)

Runge-Kutta 2500 1

(3.11) with
h = 25 hs 100 .08

(3.11) with
h = 50 hs 50 .04
Based upon only stepsize considerations, the rational method
(3.10) should be 25 to 50 times as fast as the Runge-Kutta proced-
ure. As mentioned before, the rational method requires the solution
of a set of linéar simultaneous equations at each integration step,
and because of these added operations, the saving in over-all running
time is not directly proportional tc the decrease in the number of
steps. However, as indicated in Table II, the rational approximation
method can reduce the required machine fime by a factor of 10 to 20.
This reduction can be achieved without any effort to optimize the
- code or the application of ingenious methods to perform some of the
oéerations.
In Figures 6 and 7 some of the results from the study of air

chemistry are shown. For this particular problem the following

initial conditions behind a bow shock have been used:

23000°K p

2.82 atmospheres (constant)

.238, aN
2

.762, all other mass fractions are =zero.




The solid curves again are results from the Runge-Kutta procedure
with a constant stepsize that is smaller than the stability limit.
The maximum stable stepsize,hs, is 1 x 10—8 as indicated by the
dominant negative eigenvalues (see Table III) which incidently

are almost constant over the major portion of the time interval.

The dashed curves are results from the rational approximation method
(3.10) with h = 20 hs. The calculation was started at t = 2 x_lO—7
seconds with the initial value of the species taken from the Runge-
Kutta calculation. There are two reasons for not starting the cal-
culation at téO. First, the temperature is changing rapidly near
the origin. Using a large stepsize, the temperature must change
9000°K in the first step, and the residual error due to lineariza-
tion would be excessive. Even with the iteration procedure
described in Section 5, a suitable correction for such a large
error would not be possible. A second reason for starting the
calculation away from the origin is indicated in Figure 7 for the
mass fraction aNO+' With a large stepsize, the initial detail of
the solid curve would have been lost.

The same problem was rerun with the identical stepsize, and
numerical‘procedure, but the starting point was at t = 4 x 10-7
seconds. These results are denoted by the symbol @ in Figures 6
and 7. There is close agreement with the results from the Runge-
Kutta procedure. Using a stepsize of 50 hs' the problem was run
a third time and the results are denoted by the symbol B . As

would be expected, the larger the stepsize, the more error in the

results. The maximum error is about 13 per cent for QN0+ in Figure
39



TABLE III - DOMINANT NEGATIVE EIGENVALUE OF THE "A" MATRIX
AS A FUNCTION OF TIME - AIR CHEMISTRY

Time X lO7 (sec) Eigenvalue

0 - 2.21 x 10°

.2 - 2.69 x 108

.8 - 2.92 x 108

1.2 - 2.89 x 108

2.0 - 2.84 x 108

8.0 - 2.067 x 108

8

10.0 - 2.65 x 10

8

20.0 | | - 2.57 x 10




7 at t = .8 x lO—-6 seconds. This error is attributed to the large
change in temperature and species over a single step.

From the above discussion, it should be evident that a vari-
able stepsize would be advéntageous for this class of air chemistry
‘problems. Initially, a small step is desirable to adequately define
the changes in the species, and a very large step is suitable later
in the reaction. Consequently, a very simple control on the step-
size has been introduced into the program (see Section 5). The
program halves or doubles the stepsize depending upon the per
cent change in_the temperature. With such a program, two runs have
been made and the results appear in Figures 8, 9 and 10. The agree-
ment between the results from the Runge-Kutta procedure and the vari-
able stepsize runs is exceptionally good. Run No. 2, which permitted
the temperature to change two per cent before halving the’stepsize,
extended over the time interval (0.1 x 10—5) and required 1/5 to
1/6 the time of the Runge-~Kutta procedure. Even a more significant
reduction in the machine time can be expected for more difficult air
chemistry problems. For example, results from air chemistry systems
in stream tube calculations indicate that the rational approximation
method can reduce the machine time by a factor of 15 to 20.

The digital éomputer‘programs used to obtain the numerical
results for the hydrogen chémistry éystem were written in FORTRAN
language for use on the CDC 160A and the IBM 7094. The air chemistry
results were obtained from digital computer programs written in

FORTRAN 1V for use on the IBM 7094.
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7. CONCLUSIONS

Four of the rational approximation methods of integration
have been studied for their stability and propagated error char-
acteristics. These methods were shown to be stable for all step-
sizes and therefore more suitablerfor the integration of chemical
kinetic equatione than standard methods which are partially un-
stable. The only limitation on the stepsize is caused by the trun-
cation error and the residual error introduced by the linearization
of the originel equations. However, the limitation is not severe
since the stepeize for the rational approximation is still signifi-
cantly larger than for standard methods.

The methods of integration have been applied to two different
chemistry‘systems. In the case of the hydrogen-air combustion
problem, the results from the rational approximation method agree:
well with results from the Runge-Kutta ;rocedure. The required machine
time was ;educed by a factor of 10 to 20. Alsc for an air chemlstry
system, accurate results have been obtained and only 1/5 to 1/6 of
the machine time used by the Runge-Kutta procedure was reguired.
Even much larger reductions in machine time (15 to 20) have been
achieved without any significant loss of accuracy by relaxing the
criteria for stepeize confrol in the program. All of the timing
results have been obtained Without eny attempt to optimize eoding
or procedures. Hence, it is concluded that the rational approxima-
tion methods are fast and accurate integration procedures and well-
suited for the numerical selution of the equation of chemical kinetics.
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APPENDIX A

SOLUTIONS FOR SPECIFIC INTEGRATION FORMULAS

If m is set eqﬁal to 1 in Eq. (3.6) the result is

(I-ha) o ='Ayo + b

so that solving for c¢; we have

c = (I—hA)—l (Ay0+b)

Using this expression for c; in Eq. (3.2) with t = h we obtain

formula (3.8)

1

v(h) =y, + (I-ha)" (Ay+b) h = (I-ha)™’ (y_+hb)

When m = 1, Eg. (3.7) reduces to
(I- i ha) ¢ = A + b
2 g Yo

and replacing h b i h in the‘preceeding equation, we immediétely
g Y 5

have Eq.. (3.10)

F(h) = y_ + (1-% ha) ™ (ay_+b) h = (I- % na) "M (1+ % ha)y_+hb]

Setting m = 2 in (3.6) results in the following two equations
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1 1.2 _
(I-zhA) Cy +-(h1—4hA) Cz—Ayo+b

(I-hA) c; + (2hI-h®A) ca = Ay  + b

‘Subtracting the second equation from twice the first equation

yields

c, = —'% h®Acy + AyO + b

Substituting this expression for c; into the second equation

gives

- _
- 3 i 2 1
cg = [I— a ha + 2 (ha) j 5 A(Ayo+b)

Substituting this expression for cz into the equation for ¢

1 3 1 o
c, = - > hea [I— 2 hA + Z (hA)ﬂ E A(Ayo+b) + AyO + b
1r

hA + = (ha)?

N

1 2, . _ 3 1 ’

R— 2 (hA)°+ I - 2 hAa + n (ha) l(Ayo+b)
10

hA4|l §Ayo+b.

1
L

It
T )
[}
|
N

-1
hA + % (hA)z} [1—

{

H
1
B jw
(W

J

The result of placing these expressions for c; and cz into

Eq. (3.2) is Eq. (3.9):

1 }'1 1 1 '
= 2 —— - — .
ha + 2 (ha) ] {(I+ y hA)yO+(I i hA)hbj

dlw

y(h) = [1—
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Equation (3.7) yields the following equations when m = 2

1 1 d .2 -
(I-4hA) c1+( hI 12hA) ca—AyO+b

1 -1
(1= 3 ha) ¢, + (hI- 3 h°A) cx = Ayo + b

Subtracting the second equation from twice the first equation-

gives
1

cy = ?'g h®A c2 + Ayo + b

Replacing ¢; in the second equation by this expression we have

-.)
|
-

Ca = [ £ ha + L (ha) 3 % A(Ay0+b)

The above expressions for ¢; and c; may now be used in Eq. (3.2)

?(h)=% = hA + == (ha)®! ‘(I+'];hA+l—(hA)) +hbJ

In the above derivations, matrix polynomials with arguments

involving the same matrix commute.
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APPENDIX B

HYDROGEN-AIR CHEMISTRY

H+0 ~OH+O

O +Hs - OH + H

Ho + OH » H + Ha0

20H - O + HzO

H + X - 2H + X

H O+ X~ OH + H + X .

OH + X - O+ H + X

0Oz +X ™ 20 + X

Species
No.

N o bk W

Reactions

9. OH + 0~ H + Oz
10. OH +H ~ O + H

11. H + H20 — H;

12. O + H=0 — 20H

13. 2

H + X — Hg

14. OH + H + X = HaO + X

15. O+ H+ X~ 0OH + X

16. 2

X is a catalyst

O+ X~ 02 + X

Enthalpy Relationships

hy =h_ + h (T-T), T, = 2000° K
Species W n
Symbol _ -]

H 1 . 60557.0
o 16 4255.9
Ha O 18 - 2245.8
OH 17 1304.4
Oz 32 442.16
Ha 2 6325.5
Nz 28 480.0

hy

4.968
0.31113
0.67856

10.48735

0.28216
4.0975
0.3072



DIFFERENTIAL EQUATIONS FOR THE HYDROGEN-AIR SYSTEM

S
n

Ye =

¥6 = -~ Ri - Re

Ve = - Ra - Rs

y» =0

where
Ry
R
Ra
Rq
Rs
Re
R~
Rs

+

- Ry + Rz + Ra + 2Rs + Re

Rs + Ris

Re + Rio + Rii

k1 PY1 Ve
kz PYaYe
k3 PYa Ye
ke PYaYa
ks Pye & Yy
ke PysZ v,
ko PysZ Yy

ke Pys & Yy

+ Ry +

Va3 = Ra + Re = Re - Ri1 - Riz + Ris

+ Ria

Reg

Rio

Ri1

Riz

Ris

Ris

Ris

Rie

The species subséripts are defined by

table on page B-1l.

Rs = Rio - Ri1 - 2Risa - Ri¢ - Ris

Vo = Ry - Re + R¢ + Rz + 2Re = Rs + Rio - Riz - Ris - 2R1s

Ri + R2 - Ra = 2R4 + Rs -~ R = Rse - Rio + R11 + 2R12 - Ri14 + Ris

= ko PY2Ya
= Ki10PY1Ya
= ki1 Py1¥3
= Ki12PY2Ys3
2 -
= Kiap Y1Y1byi
= K1 4P V1ya L Y

= Kis P y1yaZ Y,

kKis Pyayal Y;

the ordering in the enthalpy
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Reaction No.

REACTION RATE COEFFICIENTS

1o

11

12

13

14

15

le

1

a

2.4x10*
3.3x10%°
6.3x10 °
7.6x10"
2.4x10*°
1.2x10%°
7.5x10**
2.5x10*°
3.2x10**!
1.4x10" 2
2.4x10%*
6.9x10"°
2.0x10'°
2.3x10°*
3.0x10**

2.2x10*°®

by
k., = aiT exp(—ei/T)

For the Reactions on Page B-1l

b e
0.0 8429.794
0.0 3593.357
0.0 2969.300
0.0 503.2713
-0.86 51957.73
-1.34 59399.60

0.06 50976.35
-0.5 59335.68

0.47 50.32713
0:0 2611.978
0.0 10412.68
0.0‘ 8928.032

-1.0 0.0
-1.5 0.0

0.0 0.0

0.0 0.0




a1i

a2

=K}

ay 4

ai1s

Ay s

az

dz2

dza

dza 4

dzs

Az s

ds1

Qaaz

aze

ass

ass

fl

“A' MATRIX IN EQUATION (3.1) FOR HYDROGEN-AIR CHEMISTRY

- kipys - KioPys - ki1 fys - 4kyisp°yi Z v, - K14 P yeZ v, - Kis P ya S vy,

kaPye + Kebys - kis 0 viZ y,

ke PZ y; = ki1Pya

kapP ye + kvoZ Y; + kebya - kiobf v1 - kiap°yi Z '
- ki fy1

kz py2 + kaPys +2ks pZ '

kiPys + kiofys - kis P yaZ v

- KaPyse — ko Pysa = Kizpyas - kis 92Y12 Y, - 4k1s p°ys T Yi
- Kiz20Y2

2ke PYa + ko pZ Y; - ke py2 + ki10Py:1

kKipryyr + 2KkspZ '

=~ ke Py2

- k11 0ys + KiaP yeZ Yi

- kiz2pys

- ke pZ Y; - Kiz2Pyz - kKi1pPy2

KaPys + 2KaPys + k14p°y1Z Yy

0

K3 Pya

49
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da
dg 2
a‘a.s
ds 4
das
A4
ag 1
ag 2
as 3

as &

3% Pi/s ~ KioPYe + ki2Pys - k14.QBY4E y; + ki p2y22 '

k2 Pys ~ Ko Pys + 2Ki1aPyas + Kkis Daylz Y,

ke PZ y; * ki1 py:r + 2kyi3Pye

- karys -~ 4kePYe - k> pZ Y, - ke Pyz ~ KioPy:s - KiaP°viZ Y,
ki pyna |
ka2 Py2 - ks Pys

- ki pys

ko P‘Y4. + 2k1692Y22 yi

0

ke Py

- ki1pyr - kapZ Yy

0

kii1pPys + 2ki13 PZYLE y; + Kio0Pya

- k2 Pys

ki1 pPyy

- kKafPys + kiofw:

0

- kafyz - kapys - ks pZ Yi




AIR CHEMISTRY

Reacticns

1. 0z + 0z = 20 + O 12. 20 + 0z = Oz + Oz
2. 024+40~20+ O | 13. 20+ 0~ 02 + O
3. 0z +X 20 + X 14. 20+ X = 0s + X
4. N» + Nz — 2N + Np 15. 2N + Nz - Nz + Na
5. Np + N~ 2N + N 16. 2N + N — Nz + N
6. N + X~ 2N + X 17. 2N + X - Nz + X
7. NO+X "N+ 0+X 18. N+ 0+ X ~ NO + X
8. O+ Nz ~ NO + N 19. NO + N~ O + N
9. NO + 0 » N + Og 20, N + Oz - NO + O
10. Nz + Oz — 2NO 21. 2NO - Nz + Op
11. N + 0~ NO  + e~ 22. NOT + e~ N+O

X is a catalyst

£1
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DIFFERENTIAL EQUATIONS FOR DISSOCIATING AIR

l. y1 = 2Ry + 2Re + 2Ra + Ry + Ris + Rao + Raz
- Rs - Re - Ri1 - 2Rj2 -~ 2Ria - 2R14 - Rig
2. $2 = 2R¢ + 2Rs + 2Re + Ry + Re + Re + Raz
- Ri1 - 2Ris - 2Rys - 2R17 - Ris = Ris - Reo
Y3 = Re + 2Rio + Ris + Rao - R» = Re - Ris ~ 2Ra:
4. Y4 = R11 - Razs
vs = Ri1 - Raz -
6. Yo =Re + Rig + Rio + Ria + Rex —~ R1 -~ Re -~ Rs - Rio - Rao
7. y» = Ris + Rie + Riv +'R19 + Rey - Ry - Rs ~ Rs - Rs - Rio

where

_ Ri = ki PYeVs. Riz = kKiz P y1y1Ye
Rz = ka PY1¥s Riz = kKiaf'ya 1ya
Ry = k3 Pys i;‘{,G Y, Ry = klfthYlYl i#§,6 Yy
Re = kaPy7y» Ris = Kis P yayayr
Rs = Ks Pyzy7? Rie = Kis P yaYaVe
Re = Ka PY7 i#§,7 Yi Ri7 = K170 yays i#%,? Y
Ry = ko pyal ' Rie = KieP'y1y22 Y;
Rs = Ks PY1Y7 Ris = KiePyaVys

Re = Ke PY1Y3 Rao = kzoPYyaVs

Rio = kKioPYey7? Rz1 = ka1 PYysYs

Rii1 = ki1 PY1Ya | Rz2 = kez2PYays

The species subscripts are defined by the ordering in the enthalpy

table on page B-7.
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=
o

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

22,

O 0 N 00 b W N

REACTION RATE COEFFICIENTS

1

by
k. = aiT exp(-ei/T)

For the reactions on page B-6

a

2.3x10*°
8.5x10"°
3.0x10*°®
3.8x10'°
1.3x10°%°
1.9x10%°
2.4x10'7
6.8x1013
4.3x10"

2.0x10'*
1.3x10°

1.9x10*°
7.1x10"°
2.5x10°
2.0x10'®
7.0x10'°
1.0x10*®
6.0x10"®
1.5x10°
1.8x10°

1.0x10*3
2.0x10'°

b

-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-0.5
0.0
1.5
0.0
1.0

-1.0

e

59400
59400
159400
113200
113200
113200
75500
37750
19100
61600
31900

o ©O O O O O O O

3020
40000




“A"MATRIX IN EQUATION (3.1) FOR DISSOCIATING AIR CHEMISTRY

a1 = 2kzpye + kopPys - ksPy? - kePys - kii1Pys - 4kiz 93Y1Ye

- 6k1392Y1Y1 - 4k14.P2Y1 Y. - Kis PQYz?: Y. - kis P?Y1Ya
| i#l,6 o

aiz2 = 2KkapPys + kvpPys + KisPya + kaoPys - kiipPyr - 2k1493Y1Y1

- ki PEY1E Y; - k1'eP2YI1Yz

aia = 2kzpye + kypZ y; * k7 pPys + KiePya - kePyr - 2k1492Y1Y1 - Ki1sP°y1vs
are = 2kapPys + Kk7Pys + KazPys - 2k14P°y1y1 - k1e P y1ya
ais = 2kaPye + kvPys + kaaPye - 214 0°V1v1 - Kie P yrya
aie = 4Ky Pys + 2kaPy1 +2kap z y; * k7Pys + kaoPya - 2Kia it
2 i#l,6
- kesP V1Y¥3
a1 = 2kafye + k7Pys - kefyr - 2ki4P°yiy1 - kie P y1Ya
azy = 2KkePyr + kvpys + kePyrs + kePys - ki1Py2 - 2Ki- p%yaya
2 X <
-~ KisP yal Y; - kKis P yiya
agzz = 2Ks Pys + k7Pys - K11 Pyy - 4Kis 0°yays - 6kie P yaye

-4k, 7 PZYa Z Y; - k1892Y1Z Y, - Kia 92Y1Ya - KisPys = KaoPYe
' i#2,7

aza = 2ke py? + kv pL y; + kv pys + ke Pyr - 2ki7P°yays - kie szi Y2 = K18 PY2
aze = 2KePys + k7Pys + Ka2pPys - 2Ki7p yeys - KisP y1ye
azs = 2Ke Pys + k7Pys + Koz Pys - 2K170°yVaYe - K1sP Vi1Ya
ase = 2kePys + ko Pys - 2Ki7P°ya¥e - KisP y1Ye - Kao Py

az7 = 4kypyr + 2kspPya + 2Kks P z y, + k7Pys + KePyr - 2Kis P yays
. i#2,7

- kis 92Y1Ya
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dazl
dazz
as3
Az 4
- aas
ase
as”?
A4
dg 2
aaqa
as s
Qe 8B
Adas
ag7
ds 1
ds 2
as 3
as 4
de B
ass
ag 7

a7

56

ke py? + klePQYzE.Yi + k1893Y1Y2 - k7 0ys - KePys

kis 92Y1E Yy + Ky pzylyz + kooPye - kv Pys — kigPys

k1aPEY1Yz = ko pZ Y, - k7 Pys - kepy:r - kiepys - 4kai Pya

Kie 92Y1Y= - kv pys

k15p2y1y3 - k7 Pya

2kyjo Py? + kg 3'02Y1Ya + KaoPyz - k7pPys

ke Pyr + 2kiopPys + k1a'PEY1Y2 - k7 Pys

k11 PYa
ki1 PY2

0

- kaa Pys
- kaz PYae
0

0

a1 = kiipPy:z

agz = Kii1PY1

as a = 0

ag ¢= - Kaz Pys

ags = — Kaz2PYs
agsg = 0
asgr = 0

Ke pya + 2ki2 PBY1Ye + 3k139‘?Y1Y1 + 2Ki4 PY2 o Yy - Kz PYs

k1492Y1Y1 - kapys
ko pyr + Kia 92Y1Y1
k1492Y1Y1 - ka3 pye

kKi4P°vivi - kaPye

ki2P°yiy: —-2K1 PYe

kie P 2Y:|. Y1 ka PYs

k17 92Y2Y2 - ke Pyw

+

k20 PYe

i#l,6

2kz1 PYs - ka PYe

ka2 PY1
k10 PYs

ke Py

ks P z Y, - k1 o0Pyr - kaoPyz
i#l,6 )



arz = 2Kkis 92Y2Y7 + 3kie PZYaYa + 2Kki7 PEYa = yi + kie Pys - ks Py~

aryas = kin 92Y2Y3 + k1o Pya + 2kzi1 Pys - ke Py~
ave = K17 PBYaYa - ks Py~
ars = Ki7P yayas - KePy7

are = K17 PZYaYa - ke Py7 - kioPy»

az7 = K1 P yaYa 2ke Py? - ksPya - kep ¥ v, + ke Py1 - kioPYys

S 12,7

To obtain Bi/i/BT replace'Ri in the expression for f/i by

(b,/T + ei/'rf")Ri.
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